The 4th Asia-Pacific Congress of Sericulture and Insect Biotechnology

April 23-25, 2015
Haeundae Grand Hotel, Busan, Korea

Program & Abstracts

Organized by
The Korean Society of Sericultural Science
Department of Life Science and Environmental Biochemistry, Pusan National University, Korea
National Academy of Agricultural Science, RDA, Korea

Supported by
Insect Biotech Co., Ltd., Korea
Institute for Research and Industry Cooperation, Pusan National University, Korea
Life and Industry Convergence Research Institute, Pusan National University, Korea
Korean Sericultural Association
The 4th Asia-Pacific Congress of Sericulture and Insect Biotechnology

International Committee

Chairman Ho-Yong Park (President, The Korean Society of Sericultural Science)
Member Toru Shimada (The University of Tokyo, Japan)
Yong Ping Huang (Chinese Academy of Sciences, China)
Myung Sae Han (Kyungpook National University, Korea)
Takahiro Kusakabe (Kyushu University, Japan)
Zhongzheng Gui (Jiangsu University of Science and Technology, China)

Academic Committee

Consultant Su Il Seong, Si Kab Noh, Young Hwan Park, Michihiro Kobayashi, Hiroaki Machii, Xijie Guo
Chairman Ho-Yong Park
Co-Chairman Toru Shimada
Vice Chairman Myung Sae Han, Hisanori Bando, Guozheng Zhang
Member Pil Don Kang, Jong Gill Kim, Hae Yong Kweon, Ki Hoon Lee, In Chul Um, Tsunenori Kameda, Ken-ichi Nakajima, Tae Woon Goo, Seong Ryul Kim, Kwang Ho Choi, Kwang Gill Lee, Masaaki Azuma, Yutaka Banno, Takeshi Yokoyama, Hyun Bok Kim, Jae Su Kim, Motoko Ikeda, Kazuhiro Iiyama, Jae Sam Hwang, Hyung Joo Yoon, Jianhong Li, Jun Kobayashi, Jae Man Lee, Hyun Woo Park, Woo Jin Kim, Chisa Aoki, Hiroko Tabunoki, Amornrat Promboon, Ningjia He, K. P. Gopinathan, Xingyou Zhu, Hyun Woo Oh

Organization Committee

Chairman Sang Mong Lee (Pusan National University, Korea)
Member Byung Rae Jin (Dong-A University, Korea)
Iksoo Kim (Chonnam National University, Korea)
Yeon Ho Je (Seoul National University, Korea)
Soo Dong Woo (Chungbuk National University, Korea)
Kwang Sik Lee (Dong-A University, Korea)
Molecular cloning and effects of TmCactin gene silencing on
Tenebrio larval mortality

Yong Hun Jo¹, Jeong Hwan Seong¹, Ki Beom Park¹, Hamisi Tindwa¹,², Bharat Bhusan Patnaik¹,³, Yong Seok Lee⁴, Yeon Soo Han¹*

¹Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
²Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture, P.O. Box 3008, Chuo Kikuu, Morogoro, Tanzania
³School of Biotechnology, Trident Academy of Creative Technology (TACT), Bhubaneswar- 751024, Odisha, India
⁴Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan city, 336-745 Korea

Innate immune system is very important to protect host itself from pathogenic microorganism infection in insect. Cactin, cactus-interacting protein was for the first time identified in *Drosophila* and was discovered to be involved in dorsal-ventral patterning and intracellular toll signaling cascade. In the present study, we have identified and functionally characterized *Tenebrio Cactin* (*TmCactin*) in the beetle, *Tenebrio molitor* by RNASeq/EST. Analysis of RNA interference indicates that TmCactin plays an important role in Gram-negative and -positive bacteria infection, not fungal infection in *T. molitor* larvae.

Key words: Toll signaling, Cactin, *Tenebrio molitor*, Microbial infection, RNA interference, AMP
PI56

Functional characterization of Tm14-3-3ζ on autophagy signaling in
Tenebrio molitor

Jeong Hwan Seong1, Yong Hun Jo1, Hamisi Tindwa1,2, Bharat Bhusan Patnaik1,3,
Yong Seok Lee4, Yeon Soo Han1*

1Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
2Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture, P.O. Box 3008, Chuo Kikuu, Morogoro, Tanzania
3School of Biotechnology, Trident Academy of Creative Technology (TACT), Bhubaneswar- 751024, Odisha, India
4Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan city, 336-745 Korea

14-3-3 is a family whose members are highly conserved eukaryotic proteins that play pivotal roles in the regulation of cell survival, apoptosis, and signal transduction. In this study, two isoforms of the Tenebrio 14-3-3 proteins, Tm14-3-3ε and Tm14-3-3ζ, were identified and their functions in countering pathogenic infections were investigated. A peptide-based polyclonal antibody was generated for determination of subcellular localization of Tm14-3-3ζ. Tm14-3-3ζ is localized in the membranes of midgut epithelial cells, nuclei of the fat body and cytosol of hemocytes but little or no in Malpighian tubules. A confocal microscopic analysis, furthermore, revealed that Tm14-3-3ζ protein and the signals for LysoTracker as an autolysosome signal were not merged. During a critical window of larval to pupal transition, expression levels of Tm14-3-3ζ were inversely correlated to the acidification levels of lysosomes. Injection of C-2 Ceramide revealed a time-dependent increase in the transcripts of TmATG8 whereas it decreases in the expression level of Tm14-3-3ζ transcripts in the first hour. Depletion of Tm14-3-3ζ triggers the conversion of TmAtg8-I to TmAtg8-II (active form) as determined by Western blot analysis with TmAtg8 polyclonal antibody. Our results suggest that Tm14-3-3ζ protein has negative regulatory roles in autophagy.

Key words: Tenebrio molitor, 14-3-3ζ, Autophagy, Atg8